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Backwardation in OQil Futures Markets:
Theory and Empirical Evidence

Abstract

Oil futures markets frequently exhibit backwardation whereby more distant oil futures
prices are below the current spot price. This is inconsistent with Hotelling’s theory
that the net price of an exhaustible resource rises over time at the interest rate. We
characterize an oil well as a call option and show that backwardation is necessary to
induce production. Production is shown to be non-increasing in the riskiness of future
prices. The empirical analysis indicates that U.S. ol production is directly related
to the backwardation and inversely related to implied volatility. Backwardation is

positively related to implied volatility and to the at-the-money put option price.



1 Introduction

Oil futures markets frequently exhibit strong backwardation whereby more distant oil
futures prices are below the current spot price. Even more frequently they exhibit weak
backwardation whereby discounted futures price are lower than the current spot price.
During the period between February 1984 and April 1992 the nine months futures
price was strongly backwardated 77% of the time and weakly backwardated 94% of the
time.! The existence and persistence of backwardation in oil futures markets appears
to be inconsistent with Hotelling’s (1931) theory that the net price (price less marginal
extraction cost) of an exhaustible resource should rise over time at the rate of interest.2
This paper presents a theory for backwardation based on the characterization of oil in
the ground as a call option. We argue that it is not the presence of weak backwardation
94% of the time but rather its absence 6% of the time which should be viewed as
puzzling.

While the characterization of natural resources as options was understood long
ago,” its role in the formation of backwardation has not been previously examined.
This paper uses the option aspect of oil in the ground to explain why the oil market
should exhibit weak backwardation, and why it may exhibit strong backwardation.
Backwardation stems from the tradeoff between exercising the option (i.e., producing
the oil) and keeping it alive (i.e., leaving the oil in the ground). It seems that whenever
the market is weakly backwardated, producers will want to extract all of their oil, sell

it in the spot market and use the proceeds to purchase future oil at a lower price.

"Table 1 presents summary statistics of weak and strong backwardation for the West Texas Tnter-
mediate (WTI) crude oil contracts (traded on the NYMEX). It also shows the fraction of time futures
prices were weakly or strongly backwardated. Figure 1 shows the term structure of futures prices on
a typical day of strong backwardation. Figures 2 presents the futures price of the nearest to maturity
contract and the weak backwardation for the nine months contract,

?Elaborated discussion follows in section 2.

3See, for instance, Tourinho {1979).



However, if discounted futures price are higher than its spot price, producers will
choose to defer production. In this case they can extract the oil at a future date but
do not have to do so. They are protected against adverse price realization. Therefore,
in order to induce them to extract some oil now weak backwardation is required. If the
uncertainty about futures prices is substantial, strong backwardation will be necessary
in order to induce current production.

Our initial analysis is based on a two period economy where the reserves of oil
are owned by a continuum of price taking ol producers with heterogeneous extraction
costs. There are spot markets for oil, as well as financial markets for futures and
options contracts on oil. Each producer has to decide whether or not to exploit his
reserves in the first period. The price of oil in the second period is stochastic in the
presence of a random demand shock. Hence, oil reserves which are not extracted in the
first period will be extracted in the second period only if the realized price is higher
than the extraction cost. In this framework we prove the existence and uniqueness of
equilibrium in the market and present sufficient conditions for an inner equilibrium. We
then demonstrate that in the case of an inner equilibrium the market always exhibits
weak backwardation and may exhibit strong backwardation. The weak backwardation
is equal to the value of a put option with an exercise price equaling the extraction cost
of the marginal producer. This result is very intuitive if we view backwardation as an
insurance premium borne by the oil producer who is protected against adverse price
realizations in the future. If the put option value is sufficiently large (for instance,
when the volatility of prices is high) strong backwardation appears. If the demand
shock is degenerate, the put option value is zero and Hotelling’s result (price rising at
the rate of interest) is obtained.

An interesting outcome of our model is that equilibrium production decreases (or
remains unchanged) as the demand shock becomes “riskier” in the sense of mean pre-
serving spread. This outcome follows from the appreciation of the option element of

oil in the ground which induces producers to defer extraction.



Next, we show that our main result carries over to a multiperiod framework. More
specifically, we show that that in any inner equilibrium the market is weakly backwar-
dated with respect to any future time t. We also show that weak backwardation for
time t is bounded from below by the value of a European futures put option with a
strike equal to the time t extraction cost of the marginal producer.

We then proceed to empirically test some predictions of the model. For our tests
we use U.S. production and reserves data as well as WTI futures and option prices.
We first examine how production relates to the expected volatility of future prices and
to the level of weak backwardation. We find that oil production rate (production as
a fraction of reserves) for non-regulated states has a significant negative relationship
with implied volatility from call option prices. It has a positive but non-significant
relationship with the level of weak backwardation.

Next, we test the relationship of weak backwardation with the put option of the
marginal producer. Since the extraction cost of the marginal producer is unobservable
we regress weak backwardation on the at-the-money futures put option price. We find
a highly significant positive relationship. We notice that the put price coeflicient is
less than one. This is consistent with the extraction cost of the marginal producer (the
strike price suggested by the model) being lower than the futures price (the strike for
the at-the-money put option used in the regression). We also notice that the put price
price coefficient increases with maturity towards one. This can be explained by the
fact that the futures price decreases with extraction cost increases with maturity, and
hence the difference in value between the put option suggested by the model and the
at-the-money put option declines with maturity.

The put options suggested by the model are not observable. Nevertheless, these
options as well as the observed options are positively related to the expected volatility
of oil prices. Hence, as an alternative test we regress weak backwardation on im-
plied volatility from the traded options. The relationship is shown to be positive and

significant and provides an additional support for the above result.



The paper proceeds as follows: In section 2 prior literature on the price behavior
of exhaustible resources is discussed. In section 3 we present the model and derive the
results for equilibrium production, prices and backwardation in the market. Empirical
tests of the model’s predictions are presented in section 4. A suinmary and some

concluding remarks are included in section 5.



2  Literature critique

In his seminal paper on exhaustible resources, Hotelling (1931) derived the well known
“Hotelling’s principle” under the conditions of perfect competition and certainty. This
principle states that the net price of the resource,” say crude oil, should rise over time
at the rate of interest. The result is very intuitive. In case of an inner equilibrium in the
market, each one of the producers is indifferent between present and future exploitation
of the oil. This implies that the discounted profits are equal for all periods; otherwise, if
the profits rise by less than the interest rate, all reserves will be produced immediately,
and in the opposite case — no current production will occur. Assuming in addition that
the extraction cost per unit is proportional to the price of 0il,® the above resuli implies
that the price of oil itself appreciates at the rate of interest. However, if we assume
that the extraction cost per unit has a fixed component, the result is not preserved.
Whenever the fixed extraction cost rises by less than the interest rate, so does the price
of oil.

Under certainty the future spot prices are known and are equal to current futures
prices. Hence, the market exhibits weak backwardation whenever the fixed component
in the per-unit extraction cost rises by less than the interest rate. However, a necessary
(but not sufficient) condition for strong backwardation is extraction costs decreasing
fast enough over time. As shown in section 3, the presence of uncertainty can explain
strong backwardation even if the extraction costs increase over time.

Introduction of uncertainty by itself does not necessarily lead to backwardation in
the market. Hotelling’s principle is preserved under uncertainty if we maintain the
assumption that extraction cost per unit is proportional to the price of oil. However,

uncertainty coupled with a fixed component in the per-unit extraction cost results in the

“Net price, as used by Hotelling, means the price minus the extraction cost per unit, assuming
constant returns to scale,
SExtraction cost would be proportional to the price of oil if cil by itself were the only productive

input in extraction.



reserves of oil having a call option characteristic. We show later that due to this feature
the market will exhibit weak backwardation and may exhibit strong backwardation.
This is true even if extraction cost rises over time at the rate of interest, which would
imply a situation of no backwardation in the Hotelling world. In general, the source
of uncertainty can vary : it can be stochastic demand where it is possible to have
low realization under which no oil is extracted; it can be stochastic extraction cost
or stochastic reserves (where the extraction cost is a function of reserves) with the
possibility of high cost realization.

One explanation for backwardation that has been suggested in the literature is
that of “convenience yield” (See Kaldor ( 1939), Working (1948)). Convenience yield,
as defined by Brennan and Schwartz (1985), is “the flow of services that accrues to an
owner of the physical commodity but not to an owner of a contract for future delivery of
the commodity”. Brennan and Schwartz (1985) in a one factor model, as well as Gibson
and Schwartz (1990) in a two factor model, associate backwardation with convenience
yield. However, in contrast with our model, these models assume that the convenience
yield 1s exogenous and therefore do not analyze the formation of backwardation in the
ol market. As convenience yield depends to the notion of storage, we note that unlike
many other exhaustible resources, crude oil is almost a non-storable commodity. The
storage costs of crude oil as a percentage of its value are extremely high. In addition,
storage capacity for oil above the ground is very limited. In fact, refiners’ oil inventories
are almost never held for more than thirty days and in most cases the oil is processed as
soon as it reaches the refinery. In light of this, we find the convenjence yield explanation
unsatisfactory in the context of the crude oil market. We claim in this paper that the
answer to the backwardation puzzle lies in the oil producers’ extraction problem and
its related option aspect.

Sundaresan (1984) analyzes the producers’ extraction prablem within an equilib-
rium framework. He considers monopolistic as well as price taking producers. In

contrast with our main result, his model suggests that discounted futures prices are



always higher than the spot price. This result, however, is driven by his assumption
of zero extraction cost. Under this assumnption the value of oil in the ground is simply
equal to its intrinsic value and the additional option element is lost.

Pindyck (1980) also investigates the price behavior of exhaustible resources under
uncertainty. He allows for both demand and reserves uncertainty and does not as-
sume zero extraction cost. Surprisingly, he finds that the expected future prices obey
Hotelling’s principle. This outcome, however, is driven by the fact that producers in
his model employ a non-optimal stopping rule. Pindyck assumes that production per-
manently stops as soon as the extraction cost exceeds the price. When this occurs, the
reserves which are not yet extracted are lost and the producers do not have the option
to resume production in the future.

In this context, it is worthwhile mentioning that for certain oil wells a complete
cessation of production can cause damage to the total recovery. In the extreme, as in
the case of stripper wells, an oil well that is closed cannot be reopened at any cost.
Therefore, even if the spot price of oil is low and does not reach the extraction cost, it
may be worth maintaining a minimal level of production in order not to lose the option
of producing in the future. This feature can potentially explain the short periods of

time when the market did not exhibit weak backwardation.



3  The equilibrium model

In this section we present the model and characterize the equilibrium in the market.
In a two period framework it is shown that the market is always weakly backwardated
in an inner equilibrium. The weak backwardation is equal to the value of a put option
with a strike equaling the extraction cost of the marginal producer. If the value of the
put is sufficiently large strong backwardation emerges. Qil production is shown to be
non-increasing in the riskiness of future prices. The existence of weak backwardation
in an inner equilibrium is generalized to a multiperiod framework, and a lower bound

for the backwardation is provided.

3.1  Producers’ supply

Consider a two period economy with finite reserves of oil, Q. y of the reserves are
available at time 0, and Q; of the reserves are discovered at time 1.5 There is a con-
tinuum of heterogeneous oil producers, each of whom owns an equal share of reserves.
They are uniformly distributed with respect to their extraction cost from 0 to # . Thus,
denoting the aggregate production by ¢, the extraction technology (presented in Figure
3) is given by:
T
4= EQ ) (1)

for x € (0, z].

The extraction cost for each of the producers is assumed to increase by the interest
rate from time 0 to time 1. Thus, the extraction cost at time 0 ranges from 0 to e "z,
where r is the interest rate. We choose to focus on this case since it would imply a

situation of no backwardation under Hotelling’s conditions. In this way we are able to

emphasize the option effect as the source of backwardation.

5The addition of (1 1s introduced in order to avoid the complications associated with zero supply
at time 1. For this purpose (; can be arbitrarily small. But even with 1 = 0 our results can be

shown to hold,



Oilis traded in the spot markets in both periods. S, is the time 0 spot price. The
future spot price, S , is a random variable as of time 0. Futures and option contracts
are also traded. The futures contract is a cash settlement contract written on time 1
oil with the futures price F . The call and put options are available for any exercise
price and their prices are denoted by C} and P, (respectively), where % is the exercise
price.

Consider now an oil producer whose cost of extraction at time 1 is = . The net
revenue for this producer from extracting one unit of oil at time 0 is given by Sy—e "a.
If the producer chooses not to extract, the oil is left for time 1 where its price, S, is
random. Then, if that the price exceeds the producer’s extraction cost, each unit of
oil will earn a net revenue of §; — z. Otherwise, the oil will not be extracted and the
revenue will be zero. Notice that the payoff of a unit of oil in the ground is exactly
spanned by the traded call option with an exercise price of z . The value maximizing

production policy is given by,

So—eTz < O, = Leave oil in the ground (2)
So—e¢"z = ¢, = Indifferent (3)
So—e Tz > C, = Extract oil now . {4)

As can be seen from (2)-(4), each one of the producers decides whether or not to extract
his oil by comparing its net value above the ground (spot price minus extraction cost)
with its value in the ground (the price of the call option). No producer will store oil
above the ground, assuming that extraction costs do not rise by more than the interest
rate.” This is the case since underground storage is costless (no physical storage cost)
and provides a protection against adverse price realizations in the future (the call

option feature). In the aggregate, the supply of oil at time 0 is a function of the spot

"Extraction costs rising by no more than the interest rate is a strong sufficient condition and

obviously not necessary.



price and the other factors which determine the call prices schedule. It is given by,

0 3 if SO S e F
¢ =1 2Qs, if So—e"2=C, forsome z € (0,z) (5)
Qg ; lf Sg — e_T.'I—,‘ 2 Ci-

The supply of oil is zero if Sy < e~ F . In this case even the zero cost producer does
not produce since the value of his oil above the ground, S , is lower than its value in
the ground, Cg (notice that Co = e™"F ). All other producers, whose extraction costs
are higher, do not produce as well since S, — e~"z — C; is non-increasing in z.® The
supply ts Qo if the highest cost producer, and hence all other producers, decides to
extract. This is the case if Sy —e™"Z > (.. In all other cases the aggregate supply at
time 0 is between 0 and Qy , as described in (5). We obtain, therefore, that the supply
of oil is a non-decreasing function of the spot price and a non-increasing function of

any other variable which is positively related to the call price.

3.2 Consumers’ demand

We turn now to a description of the demand for oil. Consumers are assumed to be risk
neutral. We assume linear demand functions for the first and for the second periods.
Uncertainty is introduced through a random parallel shock to the second period demand

curve. The demand functions for time 0 and time ] are,?
Do =a—bS, (6)

and

D1:a+€—b51, (7)

See Lemma la, appendix A.

This demand structure assumes no temporal substitution of consumption between the two periods.
However, the result of backwardation in equilibrium is not driven by this assumption. Any structure
of less than perfect temporal substitution will do in our model; we choose the c¢xtreime case for reasons

of simplicity.
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where @ and b are positive. The shock, €, is assumed to have a zero mean so that the
average demand at time 1 is the same as the demand at time 0. We ruje out the trivial
case where the first period demand curve lies entirely below the highest extraction
costs; i.e., we require that e/b > 7 10 Thus, the parameter space and the random

shock space are given by:

O = {0=(0527.0001) € FE\(0} | £ > 2)
= {¢|ée L and E(&) = 0}.

Convenience yield from storing oil above the ground can result from discreteness
in oil shipments, cost of disruptions in the refining process and locational basis due to
time lag and cost of transportation.!! Abstracting from this, a necessary condition for
consumers to store oil in the presence of physical storage cost is the spot price of oil
being lower than its discounted futures price. In other words, consumers will not store

oil unless Sy < e~ " F.

3.3 Equilibrium and backwardation

The equilibrium production and prices are determined by the intersection of supply and
demand.' The equilibrium is characterized by the marginal producer. We denote by
x¢(¢, 0) the extraction cost of this producer. S5(€,0) and S¢(e, ¢) denote the equilibrium
prices (the arguments will be suppressed henceforth). A unit of il in the ground owned

by the marginal producer pays off at time 1 max[ 5% — z°,0]. Its value as of time 0,

Tn this way we allow for the possibility that all initial reserves will be extracted at time 0.

"Storage of oil above ground is minimal and is associated with extremely high physical storage
cost per unit value. Most of these small stocks of oil are in a state of transition (in pipelines, trucks
or tankers) from oil fields to refineries. The rest is held on refinery sites due to discreteness of oil
shipments and to allow for smooth refining process. Imported oil carried in tankers to the U.S. may
have a speculative aspect to it as the tankers can change their speed of sailing or even their final
destination i order to take advantage of locational basis.

2 An illustration of these curves at time 1 1s given in Figure 4.
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which is now determined endogenously, is the same as the value of a call option with
the exercise price of z* , and is denoted by Cpe . In the case of an inner equilibrium the
marginal producer is just indifferent between extracting his oil at present and leaving

it in the ground,

56— e Tx = Che . (8)

Without further restrictions on the parameters and on the demand shock, bound-
ary equilibria are possible as well.'® First, consider the boundary equilibrium of no
production at time 0. For the lowest cost producer (zero extraction cost) the value
of oil in the ground as of time 0 is simply equal to the discounted futures price. If
the spot price is lower than the discounted futures price (no weak backwardation) the
zero cost producer will not produce. The other producers (who have higher extraction
cost) will not extract their oil either.! Hence, no production occurs. Next, consider
the other boundary equilibrium of full production. Consider the highest cost producer
who has an extraction of e~z per unit at time 0. The value of one unit of oil in the
ground for this producer is equal to the value of a call option with an exercise price of
z . If the net spot price of oil at time 0, S5 — ez, is higher than the call option
value, (7, then the highest cost producer will extract the oil. All the other producers
(who have lower extraction cost) will extract their oil as well. Hence, all reserves are
depleted in the first period.

We now turn to the more interesting case, that of an inner equilibrium. We use
the following notation: F* denotes the equilibrium futures price of oil; .. and P
denote the prices of call and put options with the exercise price of z° ; and finally, the

equilibrium level of weak and strong backwardation are denoted by,

B = St tpe (9)

B = § - Fe (10)

13Theorem Al in appendix A provides necessary and sufficient conditions for boundary and for
ner equilibria. The uniqueness of the equilibrium is praven there as well.

MThis result follows from the monotonicity of Sy(z)—e "z —C, in z. See Lermnma 1, appendix A,

12



We present now the following result with respect to the backwardation in equilibrium:

Theorem 1 In an inner equilibrium the market js weakly backwardated. The weak
backwardation is equal to the value of a put option with an exercise price of z°, the
extraction cost of the marginal producer. Strong backwardation, if it exists, is equal
to the put option value minus the interest factor of the equilibrium futures price. That
is,

for all (¢,6) € (€ x ©) such that g°(€,8) € (0,Qq), we have
B, =P,., (11)

and B = P — (1 —e ") F* . (12)

Proof Asstated in equation (8), in case of an inner equilibrium the marginal producer
is indifferent between producing his oil at time 0 or leaving it in the ground. Tts value

in the ground is the call option value for which the put-call parity holds:
Cpe = e"(F* — 2 4 P, . (13)

In this way the value of the reserves in the ground can be viewed as the sum of the
guaranteed discounted net revenue at time 1, F®—2z° plus the “insurance premium”
— the put option value. To obtain the results of the theorem just combine the equi-

librium condition (equation (8)) with the put - call parity (equation (13)). O

Examining the results of theorem 1, we can clearly understand the conditions under
which backwardation exists in equilibrium. Weak backwardation is equal to the put
option value with exercise price of ¢ . The put option value is always non-negative.
In fact, it is strictly positive in an inner equilibrium, for if it is not the case there will
be no production at time 0. As suggested by the second result, the market exhibits
strong backwardation if the put option value is larger than (1 — e ")F¢ . This can

be the case if the uncertainty about future prices is sufficiently large. In the case of a

13



degenerate demand shock, (i.e. under certainty), all producers are indifferent between
present and future production and the backwardation is zero. Hence, the futures price
is equal to the spot price compounded by the interest rate, which is Hotelling’s original
result under certainty.

It is important to note that theorem 1 provides a necessary condition for the ex-
istence of an inner equilibrium in the market. In any event that the extraction cost
increases by no more than the interest rate, a necessary condition for an inner equilib-
rium is weak backwardation in the market.'® In this sense, the existence and persistence
of backwardation in the oil market are not at all puzzling. It is the absence of backwar-
dation, whenever it occurs, which should be viewed as the puzzling phenomenon. As
explained in section 2, the occurrences of “negative backwardation” mj ght be explained
by the need to maintain a minimal level of production even when the price does not
reach the extraction cost, in order to prevent a partial or total damage to the reserves.

We present now the following corollary concerning the storage of oil above ground:

Corollary 1 In any equilibrium there is no storage of oil above the ground.

Proof As suggested earlier (section 3.1), producers will never store oil above the
ground when extraction costs rise by no more than the interest rate — underground
storage 1s costless (no physical storage cost) and provides a protection against future
adverse price realizations. With respect to the consumers (as suggested in section 3.2),
a necessary condition for storing oil above the ground is the absence of backwardation
(ie., So < e™"F). But Theorem 1 implies that weak backwardation is necessary for pro-

duction to take place. Hence, the is no storage of oil above the ground in equilibrium. 0O

We next examine the effect of increased uncertainty about future prices on equilib-

“But even with extraction cost rising faster than the interest rate we can get weak backwardation

if the put option value is sufficiently large.
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rium production. More specifically, we let the demand shock in the second period be-
come “riskier” in the sense of mean preserving spread (Rothschild and Stiglitz (1971)),

and obtain the following result:

Theorem 2 The equilibrium production of oil in at time 0 js non-increasing with
the riskiness of the demand shock. That 18,
il &,& €€ and €&, where® & L&+ and E(€|4) =0, then,

qe(gz’a) < qe(ghﬂ) y (14)

for all 8 € ©.
Proof See Appendix A. 0
The result is intuitive — as uncertainty about the second period realization in-

creases, the value of oil in the ground, like the value of a call option, increases or
remains unchanged. Hence, with an increase in riskiness of the demand shock no fewer
producers will choose to leave their oil in the ground. If uncertainty about future
prices becomes extremely high, all producers will choose not to extract and the bound-
ary equilibrium of no production will be reached.
A sufficient condition for positive production at time 0 is presented in appendix A,
Theorem A2. More specifically, we show that if the random demand shock is bounded
(or alternatively if its variance is bounded) as described in the theorem, positive pro-
duction at time 0 is guaranteed.

An additional result concerns the sequence of depletion of the oil reserves in the

economy.

Theorem 3 In equilibrium, reserves with relatively low extraction cost are exploited

before those with high extraction cost: Le., extraction cost rises as reserves are de-

pleted.

d . .
104~ means “is equal in distribution as ”.
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Proof See Appendix A. a

This result is very intuitive and was mentioned by Hotelling (1931). However, in
Hotelling (1931) this outcome is obtained only if extraction cost rises by less than the
interest rate, and it results form the interest rate effect. In our economy, in contrast,
even if extraction cost rises at the rate of interest the result holds. Here, it is the pres-
ence of uncertainty that drives the result. For the lower cost producers the probability
of the second period price exceeding their extraction cost is relatively high. Hence, they
do not have an incentive to wait for the second period in the presence of backwardation
in the market. For the higher cost producers this probability is low, and hence, they

would wait for the second period hoping for a favorable demand realization.

3.4  Multiperiod analysis

The above results were obtained in a two period framework. Next, we show that our
main result, the existence of weak backwardation for any inner equilibrium, carries
over to a multiperiod framework.

Assume a T-period economy with total reserves of oil Q. Further assume a contin-
uum of oil producers who are heterogeneous with respect to their extraction cost. As
before, the producers’ extraction costs rise over time at the rate of interest and at time
T they range from 0 to . Each one of the producers can extract the oil at any time
throughout time T.

Consider an oil producer with time T extraction cost of . Denoting by z, his
extraction cost at time t,'7 the producer decides whether or not to produce at time 0
by comparing the net price of oil above ground, Sy — zg, with its value in the ground.
The value of oil in the ground, denoted by C{T;t}, is nothing but a T-period American
call option on the spot with an exercise price of {z;};<r, increasing over time. In

case of an inner equilibrium the time 0 marginal producer is just indifferent between

7 g, = e Tty

16



extracting the oil and leaving it in the ground; i.e.,

S5~y = Cloy (15)
where S’go is time equilibrium spot price of oil and z¢ is the time t extraction cost of
the time 0 marginal producer.

The next theorem generalizes the existence of weak backwardation in an inner
equilibrium to a multiperiod framework. We make the following notation: Ffo denotes
the equilibrium t-period futures price as of time 0, p:::" denotes the price at time 0 of

a t-period European futures put option on with a strike of xfo and finally,

BE, =85 - e tFe (16)

w,t —

denotes the equilibrium t-period weak backwardation at e 0.18

Theorem 4 In an inner equilibrium the market is weakly backwardated with re-
spect any future time t throughout time T. The weak backwardation for time t is no
lower than the value of a European put option on futures with an exercise price of acfo.

That is, for any inner equilibrium we have,

By, >0 and B, > plo forall t<T . (17)
Proof See Appendix A. O

Consider the first result. The zero cost producer will choose to defer extraction
whenever S§&° < et FE° for some ¢ < 1. All other producers, who have higher ex-

traction costs, will choose to defer extraction as well. Hence, a necessary condition

'®In the two period setting the was no difference between futures and forward prices of oil. How-
ever, in the mmitiperiod framework these prices differ if interest rate is correlated with prices (see
Cox, Ingersoll and Ross (1981)). While the analysis refers to forward prices, we continue to use the
terminology of futures since the interest rate is assummed fo be constant and in order to maintain

continuity from previous sections.
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for positive production at time 0 is the existence of weak backwardation with respect
to each of the future periods. The second result utilizes the the fact that a T-period
American call option on the spot is greater in value than any t-period European call op-
tion on the futures (for t < 7). This relationship coupled with condition (15) and with
put-call parity yields the lower bound for weak backwardation in an inner equilibrium.,

The above result is general and does not require the development of a complete
multiperiod equilibrium model. We proceed to argue intuitively that increased un-
certainty with respect to future prices leads to a decrease in current production. In
order to well define this notion of uncertainty we turn to a partial equilibrium analysis.
More specifically, we assume that the spot price of oil follows a geometric Brownian
Motion with volatility parameter of & and an unspecified drift. Assuming in addition
all other conditions necessary to invoke the Black-Scholes option pricing formula, we
can establish the following: Current oil production is decreasing in o. This result is
clear when we consider the time 0 marginal producer. Other things equal, an increase
in the price volatility will lead this producer to decrease production since the value of
the oil well (an American call option} is decreasing in 0. Hence, current oil production

1s decreasing in o.
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4  Empirical Evidence

In this section we test some empirical implications of the model developed above. The
empirical evidence is consistent with the model. Non-regulated oil production within
the U.S. is found to be positively related to the level of weak backwardation and
negatively related to implied volatility. Also, weak backwardation is shown to have
a significant positive relationship with the at-the-money put option price and with

implied volatility.

4.1  Production, backwardation and volatility

In the previous section it was shown that higher spot price of oil leads to an increase
in current supply, whereas higher call option prices strengthen the incentive to de-
fer production. We wish to examine these predictions empirically. We note that in
practice, changing oil prices affect the intensity of field development and exploration.
These, in turn, lead to fluctuations in extraction costs and in reserves. Therefore, it
is more appropriate to use relative variables for the test as opposed to absolute vari-
ables. Production rate (production as ratio of reserves) is taken to be the dependent
vartable. Weak backwardation rate (relative price of the spot versus the futures) and
implied volatility are taken to be the explanatory variables.'® Since producers increase
extraction as the spot price appreciates relative to the futures price, we expect a posi-
tive relationship between production rate and backwardation rate. We expect to find
a negative relationship between production rate and volatility since higher volatility
induces producers to defer extraction (as a result of the option effect).

The United States oil production and reserves data, as well as the WTT crude oil

futures and option prices, are used to construct the aforementioned variables.2’ Since

YExact definitions of the variables follow.

20The monthly data on production and reserves was obtained from the Energy Information Admin-
istration (the Department of Energy). The futures and options data are for the WTI (West Texas

Intermediate) crude oil contracts listed on the New York Mercantile Exchange.
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some of the states regulate production and others do not, we measure production rate
separately for each of the two groups — the regulated and the non-regulated states.
The backwardation is measured for the second, third and fourth ncarby contracts
relative to the first nearby contract, where the latter serves as a proxy for the spot
price.?#* The implied volatility is obtained from the at-the-money call option on the
corresponding nearby futures contract, using the Black (1976) formula. The longest
horizon examined is four months since the options are not actively traded beyond the
fourth nearby contract.

Production rate (monthly production divided by reserves), ¢, is regressed on lagged
monthly averaged weak backwardation rate, BR,, and on lagged monthly averaged

implied volatility, &,
q: = a5 + /ﬂriB_R:t_] + '-Yra'*r,t—l + €rt - (18)

Weak backwardation rate is defined to be the BRY that satisfies § = e~(r—BRY)T
where S is the price of the nearest to maturity contract, F, is the price of the 7-th
nearby futures contract and r, is the LIBOR rate for the corresponding maturity. The
implied volatility, o, , is computed from the 7-th month at-the-money call option price
using the Black (1976) formula. The sample is for the period December 1986 through
December 1991.23

The results are presented in Table 2. The t-statistics refer to the nul] hypothesis that

the corresponding coefficients are zero, whereas the x?-statistic refers to the null that

2 The first nearby futures contract is the nearest to maturity contract and its time to expiration
ranges from one day to thirty one days. The second nearby contract has one additional month to
expiration. The third nearby has two additional months, etc.

#There is no organized trading in standardized spot contracts for oil and therefore quoted spot
prices will vary by dealer, quality and place of delivery. To this extent, the use of the first nearby
futures price is preferable.

ZWhile futures prices and aggregate production rates are available earlier, data on option prices
are available from December 1986. To make use of the longer data for futures prices and production

all tests were conducted using time series estimated volatilities. The results obtained were similar,
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all slope coefficients are zero. The standard errors used to calculate these statistics were
computed using Hansen’s (1982) covariance matrix.? Consistent with the underlying
theory, the coefficients on the backwardation are positive, although non-significant, and
the coeflicients on the volatility are significantly negative.?* Though not presented, we
note that the absolute value of the coefficients as well as the level of significance are

lower for the regulated states than for the non-regulated states.

4.2  Backwardation, put option price and volatility

As suggested by Theorem 1 in case of an inner equilibrium weak backwardation is equal
to the value of a put option on the second period futures price with a strike equaling the
extraction cost of the marginal producer. Theorem 4 provides a lower bound for weak
backwardation in a multiperiod framework — weak backwardation is no lower than
the value of a European futures put option with a strike equaling the time t extraction
of the marginal producer. We wish to examine empirically the relationship between
backwardation and the put option values, expecting a significant positive relationship.
However, the extraction cost of the marginal producer at each point in time is unknown.
Therefore, at-the-money put options are being used (discussion follows). An alternative
approach is to use the implied volatility from traded options as an explanatory variable
for backwardation.

Weak backwardation for the second, third and fourth nearby futures contracts, BY,
is regressed on the corresponding at-the-money put option price, P, , over the period

December 1986 through December 1991:

B:—L:t =a; + 57P'r,t + € (19)

Weak backwardation is defined by BY =5 —e"F, | where S is the price of the

Hcase (iii} with truncation after two lags.

*Similar results were obtained for the regression of production rate on the nearest to maturity
futures price (as proxy for the spot) and call option prices. The coefficient was non-significantly

positive for the former and significantly negative for the latter.
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nearest to maturity contract, F; is the price of the 7-th nearby futures contract and r.
is the LIBOR rate for the corresponding maturity. The results are presented in Table
3. The t-statistics refer to the null hypothesis that the corresponding coefficients are
zero.*® Consistent with our conjecture, there is a highly significant positive correlation
between backwardation and the at-the-money put price.

Considering the absolute magnitude of the put price coefficients, we note that they
are less than one and monotonically increase with maturity. As the put options used
in the regression differ from those suggested by the model, two possible effects are
considered. On the one hand, the short term American put options used are less
valuable than long term American put options associated with the long term nature
of oil wells. This would suggest higher than one slope coefficients. On the other
hand, the put options used are at-the-money. To the extent that the extraction cost
of the marginal producer is lower than the prevailing futures price, these options are
more valuable than those suggested by the model. F urthermore, since the market is
backwardated (futures prices decrease with maturity) and the extraction cost rises over
time, the gap in value between put options used in the regression and those suggested
by the model should decrease with maturity. This would suggest smaller than one
slope coeflicients which increase with maturity, as observed in table 3.

As explained above, the put option suggested by the model are not observable.
Nevertheless, these options as well as the observed options are positively related to the
expected volatility of oil prices. Hence, an alternative approach is to use the implied
volatility from traded options as an explanatory variable for backwardation. We regress

weak backwardation for the second, third and fourth nearby futures contract, BY. on

**Once again the standard errors used to calculate these statistics were computed using Hansen’s

(1982) covariance matrix (case (ili) with truncation after two lags).
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the implied volatility from the corresponding at-the-money call option price, o,:%7
B:jt = Oy + IBTO-T|t + f'r,t . (20)

Weak backwardation and implied volatility are defined above. The sample is unchanged
as well. As can be seen in Table 4, the relation is positive and highly significant and it
provides further reinforcement for the previous result,

The above results suggest that the preponderance of backwardation in the oil mar-
ket results from rational extraction decisions of producers. This raises the question
concerning whether the small percentage of observations when the o1l market was not
in weak backwardation is prima facia evidence of irrational behavior. In section 3.3 we
briefly mentioned that many oil wells, such as stripper wells, must have a minimum
level of production at any given time to be able to continue production in the future,
If these high cost producers cease production at present, future production would be
reduced. When the price of oil is low and marginal producers are losing money at time
0 in order to maintain their options to produce in the future, it is possible for the oil
market to be in contango (spot price lower than the discounted futures price). Figure
2 provides support for this conjecture. As can be seen in the figure, periods of negative

backwardation are associated with relatively low price for oil.

*In order not to use the same put options data to estimate the implied volatilities, we use call

options for this purpose.
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5 Conclusions

This paper presents a theory of backwardation in oil futures markets. The paper
focuses on the producer’s behavior and demonstrates that the call option feature of oil
in the ground is the source of backwardation.

In a two period framework it is shown that the market is always weakly backwar-
dated in an inner equilibrium. The weak backwardation is equal to the value of a put
option with an exercise price equaling the extraction cost of the marginal producer. If
the value of the put is sufficiently large strong backwardation emerges. Equilibrium
production is shown to be non-increasing in the riskiness of future prices. The existence
of weak backwardation in an inner equilibrium is generalized to a multiperiod frame-
work — the market is weakly backwardated with respect to any future time t. Weak
backwardation is bounded from below by the value of a t-period European futures put
option with a strike equal to the time t extraction cost of the marginal producer.

The empirical evidence is consistent with the predictions of the model. Non-
regulated oil production within the U.S. is found to be positively related to the level of
weak backwardation and negatively related to the implied volatility. Also, weak back-
wardation is shown to have a significant positive relationship with the at-the-money

put option price and with implied volatility.
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Appendix A

Define the function H(z(¢,8);¢,6) as follows (suppressing the arguments of z);

H(z;€8) = SU—E_TE—‘C(Sl,ZI,T‘)

- i %x — e e TS -2 | $) > 2)P(Sy > 7). (21)
Also define the following functions (i = 1, 2):
ci(&,ki8) = e TE(F— ki | €2 k)P(E> k) (22)
where
ki = bx~—a+Q1% (23)
ky = bo‘:—a+Q—QU§. (24)

Note that the function ¢;(&, k;, ) is the value of an option written on ¢ with the the exercise
price of k; .
The option C(g'l,a:, r) pays off at time 1 max[g'l —z,0] . It is easy to verify that,

@

~ z
— = € — e L —— £ -k
max[5; — z,0] 10 max[é — ky,0] + Wi £ 0) max{é — k;,0] , (25)
which implies that
. T B Q ~
= — )+ ———— :
C(Slaxa'r) bz _I_ch(fakl? )+ b(bf +Q)62(€1k2a9) (26)

Hence, the function H(z;é,8) can be written as:

- a _r z .
H(J’I‘;E,@) = 3—- %x—e T — mcl(ﬁ,k1,9)~ b(b_i'ci:?)

We establish now the following results which are used in the proofs to follow:

Cg(g, k2,9) : (27)

Lemma 1 H(z;¢,6) is decreasing in z : ie.,

JH(z;€,0)

e <0, (28)

Proof of lemma 1 By the standard option result that —e™" < %? < 0 we obtain from

(27)
OH _ Qu_ ., t+Qi/ada Qo o
dz T~ bz bZ+Q Ok ba(bz + Q) Ok,
¢ Qo bE4Qz0n
= bz bi+Q ok
« _Qo_ €e7Qo
- b I+Q
< 0.
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O
Lemma la Let J(z)=5;—e "z — C(31,2,0) . Then, J(z) is decreasing in z ; ie,

0J(z)

9z <0.

Proof of lemma 1a By the standard option result that —e™7 < % < 0 we obtain:

aJ ac
=<y,
oz ¢ or — 0
]
Lemma 2 Let &,¢; € £ and £ € &, where 28 € J €&+ € and E(€ [ €) =0, Then,

for all ¢ € [0,2] and for all § € ©.

Proof of lemma 2 The value of a European call option is non-decreasing in increased
riskiness in the sense of mean preserving spread (See Merton (1973)). Thus, we have

Ci(glakag) < C,j(gg,k', 0) .

The desired result follows immediately from the definition of (z,€,8) . |

Theorem A1l Existence and uniqueness of equilibrium (necessary and sufficient condi-
tions):

Let ¢°(€,8) be the equilibrium production.

Then,

1. For all (¢,8) € (£ x ©) such that

<eTFe, (30)

=]

we have ¢°(¢,8) = 0.
2. For all (€,6) € (£ x @) such that

aqu_
b

e~z > C(5,&,7) , (31)

we have ¢°(¢,6) = Q.

d . Ce
e L means “ is equal in distribution as ”.
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3. For all (€,0) € (£ x ©) such that

% > eTFE (32)
and 2= Qo _ e'% < C(81,2,7), (33}

b
there exists a unique ¢°(¢,8) € (0, Qq).

Proof of theorem A1l

1. Necessity:
¢*(€,0) = 0 implies H(0;¢,0) < 0. Hence,

H(0;,6) = %—C(S’l,(),r) <0.

The result (equation (30)) follows immediately since e~ F¢ = C(51,0,7) .

Sufficiency:
Let a/b < e~"F* and suppose that ¢%(,0) > 0 . It follows that (using lemma 1 for the
strict inequality),
0 < H(z%¢6)
< H(0;e,8)
= & e

b
< 0. —=

Hence, ¢°(¢,6) =0 .
2. Necessity:
g°(¢,0) = ) implies H(&;¢,6) > 0. Hence,

a-Q
b
The result (equation (31)) follows immediately.

H(z;€,0) = O—E_T.’E%C(S'],G_U,T‘)ZO.

Sufficiency:
Let “_bQ —e "z > C(,_‘;’l,i,r) and suppose that ¢°(,6) < Qg . It follows that
{using lemma 1 for the strict inequality),

0 > H(z%¢0)

> H(z;é0)

a _bQO —e Tk — C(S‘,i,r)
2 0. —<

Hence, ¢°(¢,6) = Qq .
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3. To prove the necessity and sufficiency of the conditions for the

existence of an inner

equilibrium (equations (32) and (33)), as well as its uniqueness, just combine the first

and second results in this theorem together with lemma 1. The third result follows

then by the intermediate value theorem.

Theorem A2 Sufficient conditions for inner equilibrium :
1. If (€,6) € (£ x ©) and

then ¢°(¢,0) € (0, Q).
2. If (€,0) € (£ x ©) and

then qf(g,a) € (OvQO)

Proof of theorem A2

1. (a) If Var(é) < @ , then

IV

Var(é) < Q ,
and - QO < ez 3
b
€<,
and tg_ﬂ S e‘rj ,
b
H(0;¢,6) =
a z - ¢ ~7 =
5O " g gy @ et @)0)
a e_"f o . e_r:fﬂ', -
P g Pl E2 —aPEz —a) + wroléz-a)
b_(%f:(aeg b5 — 0+ Q)P(e > bi - a + Q)
eQBE-atQ), . .
CEY) Pézbz—a+Q)
@  a —r
e B + 3(1 —e")
€ F - e .
mE(€ l{zz—a}) - mE(‘ 1{€be—ﬂ+Q})
_T_Q_ R _— e -
Ty T mroll le-al bz + 0y © 1€ Hezte—aray |
Q e "z 21201 1
3 Thir g EIEAE gy )
e Q) ~124d 1
52 + 0) Z 1V (E [Nznnrg) )3
L el ey
0.
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(34)
(35)

(36)
(37)

(38)

(39)

(40)

(41)

(42)

(43)



To pass from (39) to (40) we note that the probability takes no values larger than
L. The passage from (40) to (41) is due to the introduction of absolute values. We
used the Cauchy-Schwartz inequality and the sufficient condition to pass from (41)
to (42). In passing from (42) to (43) we utilize the boundedness of the indicator
function by 1 and then collect terms. The last inequality is obtained from the
sufficient condition. Hence, if Var(€) < Q then there is positive production at
time 0.

(b)
H(z;¢,8) =

a—QO — e "%
b

1
TG EE - a1 b2+ at QU2 0)P(E-bi+a+ Q> 0)

a_QO —ra—:

< -
- b

< 0.

The first inequality holds since the second term is non-negative A suflicient con-
dition for the second inequality is % < e77Z . Hence, if this is the case, some
reserves will be left for the second period .

2. (a) Assume that ¢ is bounded by L. Then,

H(0;¢,0) =
a e TF . ) i
b g gllételiz-apPE> —a)
- b(lfi:__r-{-QQ)E(g_bf“]'“_Q'gaﬂf—a+Q)P(EZb£—a+Q)
> E_E_TE(L+G)_€_T(L—(J"E+G»Q)
Tob bE4Q b(bz + Q)
Q-1
> A
> 0.

The last inequality holds if Q > L. Hence, é bounded by @ is a sufficient condition
for positive production at time 0.

(b) Same as 1(b) above.

O

Proof of theorem 2 The proof is given for the case of an inner equilibrium; the reasoning
can be exactly reproduced for the boundary equilibria. Let &;,¢, € &\{o) and fe &\{0}y, where
€2~ &+ and E(£| &)= 0. Suppose that for all 6 € ©,

¢ (€2,0) > ¢°(&,6)

29



This in turn implies that,
25 = z%(€3,0) > 2°(6,0) = z¢ .

Now, using lemma 1 for the first inequality and lemma 2 for the second inequality, we obtain,

0 H(mi’,El,B)
H(:E;,El,g)

H(.’I:;,Eg, 9)

v v

I

0. -«

Hence, ¢°(&2,0) < ¢°(€,,6) . |

Proof of theorem 3 From lemma 1 H(z;€,0) is decreasing in z . Thus, any producer
with extraction cost z that is higher than z°(€,8) will choose not to extract at time 0 since

H(z;8,8) < H(z%¢,8)<0.

Similarly it can be shown that producers with extraction cost & that is lower than z°(¢,#4)
will choose to extract their oil at time 0. Hence, the result is obtained. a

Proof of theorem 4

L. The zero cost producer will choose to defer extraction whenever 5 < e FE for
some ¢ < 7'. All other producers, who have higher extraction costs, will choose to defer
extraction as well. Hence, a necessary condition for positive production at time 0 is
By, >0forallt <7,

2. CT , is a T-period American call option on the spot with a strike of {z¢° u<T Where
{=5°} P v Jug
mff = e~ "(T=4ge 1t is no lower i value than a t-period American call on the spot

with a strike of {a:io}ugt. This, in turn, is no lower in value than a t-period European
call option on the spot with a strike a:fo, which equals a t-period call option on the

futures with the same strike. Denoting the latter by ¢! .0 the above inequalities can be
Ty
summarized as

C'f;go} > cifg forall ¢t <T . (44)
Put call parity implies
o =plo+eH(F — o) (45)
¢ Ty

Now combine the equilibrium condition (15) with (44) and (45) to obtain Bfuovt >t
forall t < 7. ’
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Table 1: Descriptive Statistics for Backwardation

The descriptive statistics were computed for the period of February 1984 through April
1992. Weak backwardation is defined by BY =5

— e """ F;, and strong backwardation is
defined by B =

S — F;, where § is the price of the nearest to maturity contract, F. is the

price of the r-th nearby futures contract and 77 is the LIBOR rate for the corresponding
maturity.

Panel A: Weak Backwardation (in dollars)
Futures contract 2nd 3rd 4th 5th 6th

Tth 8th 9th

Average 0.29 049 064 076 087 0.96 1.04 1.11
Median 021 035 044 053 059 064 0.68 0.71

S. Deviation 048 0.79 104 125 143 157 1.70 1.82
Minimum 205 -2.014 -267 -3.04 -3.34 -3.52 -3.66 -3.76
Maximum 3.53 4.70 579 6.82 7.80 870 9.82 10.80

Panel B: Strong Backwardation (in dollars)
Futures contract 2nd  3rd  4th  5th  6th  7th  8th 9th

Average 024 043 058 070 0.81 0.90 098 1.05
Median 15 029 038 047 053 058 0.61 0.65

5. Deviation 0.48 0.78 1.03 1.24 142 157 1.70 1.82
Minimum -2.09 -2.19 272 -3.09 -3.39 -3.58 -3.72 -3.82
Maximum 343 460 570 675 771 861  9.73  10.70

Panel C: Fraction of the Time in Backwardation (in %)
Futures contract 2nd  3rd 4th 5th 6th 7th 8th 9th

Weak 81.80 85.08 87.04 89.38 90.31 91.63 93.00 93.88
Strong 71.09  71.87 7241 73.08 7451 7500 76.13 76.91
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Table 2: Production, Backwardation and Volatility
Gt = &y + ﬂ'r-B_R::t_} + 'f‘ra-‘r,z—l + €t

Production rate {monthly production divided by reserves), g, is regressed on lagged monthly averaged
weak backwardation rate, BR., and on lagged monthly averaged implied volatility, #,. Weak
backwardation rate is defined to be the BRY that satisfies S = e~{"=BRI)TF_ where S is the price
of the nearest to maturity contract, ¥, is the price of the 7-th nearby futures contract and r; is the
LIBOR rate for the corresponding maturity. The implied volatility, &, , is computed from the 7-th
month at-the-money call option price using the Black (1976) formula. All variables are expressed
In percentage annual terms. The t-statistics refer to the null hypothesis that the corresponding
coeflicient is zero, whereas the y?-statistic refers to the null that all slope coefficients are zero. The

standard errors used to calculate these statistics were computed using Hansen’s (1982} covariance

matrix,
December 1986 - December 1991 (60 obs.)
T=2 T=3 T=4
Gz Bs Yo (3 Bs 73 i B4 Ya

Estimator 9.349  0.082 -0.025 9.343  0.085 -0.026 9.342  0.059 -0.026
t-statistic 24.642 0549 -4.044 23.735 0401 -3.092 22,429 0.219 -2.453

p-value 0.000  0.293  0.000 0.000 0345 0.002 0.000 0414  0.009
x -statistic 16.953 11.133 7.572

p-value 0.000 0.004 0.023
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Table 3: Backwardation and the Put Option Price
B;-l:g =a, + 3, P‘r,t + €

Weak backwardation for the 7-th month futures contract, BY, is regressed on the corresponding
at-the-money put option price, P,. Weak backwardation is defined by BY = S—~e~""F,  where §
is the price of the nearest to maturity contract, F, is the price of the r-th nearby futures contract
and r; is the LIBOR, rate for the corresponding maturity. The t-statistics refer to the null hypothesis
that the corresponding coeflicient is zero. The standard errors used to calculate these statistics were

computed using Hansen’s (1982) covariance matrix.

December 1986 - April 1992 (1222 obs.)

T=2 T=3 T=4

Gy B G s Oy B4
Estimator 0.047 0.250 -0.091  0.557 -0.278  (.831
t-statistic  1.168 8.312 -1.401  15.370 -3.028 15471

p-value  0.121 0.000 0.080  0.000 0.001  0.000
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Table 4: Backwardation and Volatility
BY, = a; + Br0,, + €t

Weak backwardation for the 7-th month futures contract, BY, is regressed on the implied volatility
from the corresponding at-the-money call option price, o,. Weak backwardation is defined by
BY =85 —e""7F. | where S is the price of the nearest to maturity contract, F is the price of
the 7-th nearby futures contract and rr is the LIBOR rate for the corresponding maturity. The
implied volatility, «, , (in percentage annual terms) is computed using the Black (1976) formula.
The t-statistics refer to the null hypothests that the corresponding coefficient is zero. The standard

errors used to calculate these statistics were computed using Hansen’s (1982) covariance matrix.

December 1986 - April 1992 (1222 obs.)
T=2 =3 T=4

g B2 3 3 diq B4

Estimator -0.033 0.011 -0.287  0.028 -0.631  0.048

t-statistic  -0.601 6.858 -2.838 8.787 -4.112  9.213
p-value 0.274  0.000 0.002  0.000 0.000 0.000
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Figure 1: Term Structure of Futures Prices

WTI crude oil futures,
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This figure presents the term structure of futures prices for the WT1 contracts (traded on the N YMEX})
on a typicat day of strong backwardation (11/2991).



Figure 2: Spot Price and Backwardation

WTI Crude Futures: Feb.84 - Apr.92
50

0+

20

0 F
0 MVMaMmAMWM .

840202 880310
Time

Spot — Backwardation

The figure presents the futures price of the nearest to maiurity contract (which is a proxy for the spot price)
and the weak backwardation of the ninth nearby futures price vs. the nearest 1o maturity futures price,
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Figure 3 : Production Technology in the Economy

Extraction x a4

cost
X
0
Q = Total reserves Quantity

Qo = Time O available reserves

X = Highest extraction cost



Figure 4 : Suppiy and Demand at time 1

Price S, ‘

2 '[,é Supply
b
% ———-f— ---------
|
|
|
|
|
8 !
X |
'\, Demand
|
|
' —
0 Q-Qo %. q
Q = Total reserves Quantity

Q,= Time 0 available reserves

X = Highest extraction cost
X = Marginal producer’s extraction cost



